Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Distinguishing successive ancient polyploidy levels based on genome-internal syntenic alignment.

Identifieur interne : 000A19 ( Main/Exploration ); précédent : 000A18; suivant : 000A20

Distinguishing successive ancient polyploidy levels based on genome-internal syntenic alignment.

Auteurs : Yue Zhang [Canada] ; Chunfang Zheng [Canada] ; David Sankoff [Canada]

Source :

RBID : pubmed:31842736

Descripteurs français

English descriptors

Abstract

BACKGROUND

A basic tool for studying the polyploidization history of a genome, especially in plants, is the distribution of duplicate gene similarities in syntenically aligned regions of a genome. This distribution can usually be decomposed into two or more components identifiable by peaks, or local maxima, each representing a different polyploidization event. The distributions may be generated by means of a discrete time branching process, followed by a sequence divergence model. The branching process, as well as the inference of fractionation rates based on it, requires knowledge of the ploidy level of each event, which cannot be directly inferred from the pair similarity distribution.

RESULTS

For a sequence of two events of unknown ploidy, either tetraploid, giving rise to whole genome doubling (WGD), or hexaploid, giving rise to whole genome tripling (WGT), we base our analysis on triples of similar genes. We calculate the probability of the four triplet types with origins in one or the other event, or both, and impose a mutational model so that the distribution resembles the original data. Using a ML transition point in the similarities between the two events as a discriminator for the hypothesized origin of each similarity, we calculate the predicted number of triplets of each type for each model combining WGT and/or WGD. This yields a predicted profile of triplet types for each model. We compare the observed and predicted triplet profiles for each model to confirm the polyploidization history of durian, poplar and cabbage.

CONCLUSIONS

We have developed a way of inferring the ploidy of up to three successive WGD and/or WGT events by estimating the time of origin of each of the similarities in triples of genes. This may be generalized to a larger number of events and to higher ploidies.


DOI: 10.1186/s12859-019-3202-x
PubMed: 31842736
PubMed Central: PMC6915858


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Distinguishing successive ancient polyploidy levels based on genome-internal syntenic alignment.</title>
<author>
<name sortKey="Zhang, Yue" sort="Zhang, Yue" uniqKey="Zhang Y" first="Yue" last="Zhang">Yue Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Mathematics and Statistics, University of Ottawa, 150 Louis Pasteur pvt, Ottawa, K1N 6N5, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Mathematics and Statistics, University of Ottawa, 150 Louis Pasteur pvt, Ottawa, K1N 6N5</wicri:regionArea>
<wicri:noRegion>K1N 6N5</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zheng, Chunfang" sort="Zheng, Chunfang" uniqKey="Zheng C" first="Chunfang" last="Zheng">Chunfang Zheng</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Mathematics and Statistics, University of Ottawa, 150 Louis Pasteur pvt, Ottawa, K1N 6N5, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Mathematics and Statistics, University of Ottawa, 150 Louis Pasteur pvt, Ottawa, K1N 6N5</wicri:regionArea>
<wicri:noRegion>K1N 6N5</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sankoff, David" sort="Sankoff, David" uniqKey="Sankoff D" first="David" last="Sankoff">David Sankoff</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Mathematics and Statistics, University of Ottawa, 150 Louis Pasteur pvt, Ottawa, K1N 6N5, Canada. sankoff@uottawa.ca.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Mathematics and Statistics, University of Ottawa, 150 Louis Pasteur pvt, Ottawa, K1N 6N5</wicri:regionArea>
<wicri:noRegion>K1N 6N5</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31842736</idno>
<idno type="pmid">31842736</idno>
<idno type="doi">10.1186/s12859-019-3202-x</idno>
<idno type="pmc">PMC6915858</idno>
<idno type="wicri:Area/Main/Corpus">000560</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000560</idno>
<idno type="wicri:Area/Main/Curation">000560</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000560</idno>
<idno type="wicri:Area/Main/Exploration">000560</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Distinguishing successive ancient polyploidy levels based on genome-internal syntenic alignment.</title>
<author>
<name sortKey="Zhang, Yue" sort="Zhang, Yue" uniqKey="Zhang Y" first="Yue" last="Zhang">Yue Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Mathematics and Statistics, University of Ottawa, 150 Louis Pasteur pvt, Ottawa, K1N 6N5, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Mathematics and Statistics, University of Ottawa, 150 Louis Pasteur pvt, Ottawa, K1N 6N5</wicri:regionArea>
<wicri:noRegion>K1N 6N5</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zheng, Chunfang" sort="Zheng, Chunfang" uniqKey="Zheng C" first="Chunfang" last="Zheng">Chunfang Zheng</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Mathematics and Statistics, University of Ottawa, 150 Louis Pasteur pvt, Ottawa, K1N 6N5, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Mathematics and Statistics, University of Ottawa, 150 Louis Pasteur pvt, Ottawa, K1N 6N5</wicri:regionArea>
<wicri:noRegion>K1N 6N5</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sankoff, David" sort="Sankoff, David" uniqKey="Sankoff D" first="David" last="Sankoff">David Sankoff</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Mathematics and Statistics, University of Ottawa, 150 Louis Pasteur pvt, Ottawa, K1N 6N5, Canada. sankoff@uottawa.ca.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Mathematics and Statistics, University of Ottawa, 150 Louis Pasteur pvt, Ottawa, K1N 6N5</wicri:regionArea>
<wicri:noRegion>K1N 6N5</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC bioinformatics</title>
<idno type="eISSN">1471-2105</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bombacaceae (genetics)</term>
<term>Brassicaceae (genetics)</term>
<term>Genes, Plant (MeSH)</term>
<term>Genome, Plant (MeSH)</term>
<term>Models, Genetic (MeSH)</term>
<term>Mutation (genetics)</term>
<term>Polyploidy (MeSH)</term>
<term>Populus (genetics)</term>
<term>Synteny (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Bombacaceae (génétique)</term>
<term>Brassicaceae (génétique)</term>
<term>Gènes de plante (MeSH)</term>
<term>Génome végétal (MeSH)</term>
<term>Modèles génétiques (MeSH)</term>
<term>Mutation (génétique)</term>
<term>Polyploïdie (MeSH)</term>
<term>Populus (génétique)</term>
<term>Synténie (génétique)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Bombacaceae</term>
<term>Brassicaceae</term>
<term>Mutation</term>
<term>Populus</term>
<term>Synteny</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Bombacaceae</term>
<term>Brassicaceae</term>
<term>Mutation</term>
<term>Populus</term>
<term>Synténie</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Genes, Plant</term>
<term>Genome, Plant</term>
<term>Models, Genetic</term>
<term>Polyploidy</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Gènes de plante</term>
<term>Génome végétal</term>
<term>Modèles génétiques</term>
<term>Polyploïdie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>A basic tool for studying the polyploidization history of a genome, especially in plants, is the distribution of duplicate gene similarities in syntenically aligned regions of a genome. This distribution can usually be decomposed into two or more components identifiable by peaks, or local maxima, each representing a different polyploidization event. The distributions may be generated by means of a discrete time branching process, followed by a sequence divergence model. The branching process, as well as the inference of fractionation rates based on it, requires knowledge of the ploidy level of each event, which cannot be directly inferred from the pair similarity distribution.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>For a sequence of two events of unknown ploidy, either tetraploid, giving rise to whole genome doubling (WGD), or hexaploid, giving rise to whole genome tripling (WGT), we base our analysis on triples of similar genes. We calculate the probability of the four triplet types with origins in one or the other event, or both, and impose a mutational model so that the distribution resembles the original data. Using a ML transition point in the similarities between the two events as a discriminator for the hypothesized origin of each similarity, we calculate the predicted number of triplets of each type for each model combining WGT and/or WGD. This yields a predicted profile of triplet types for each model. We compare the observed and predicted triplet profiles for each model to confirm the polyploidization history of durian, poplar and cabbage.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>We have developed a way of inferring the ploidy of up to three successive WGD and/or WGT events by estimating the time of origin of each of the similarities in triples of genes. This may be generalized to a larger number of events and to higher ploidies.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">31842736</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>02</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>18</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2105</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>20</Volume>
<Issue>Suppl 20</Issue>
<PubDate>
<Year>2019</Year>
<Month>Dec</Month>
<Day>17</Day>
</PubDate>
</JournalIssue>
<Title>BMC bioinformatics</Title>
<ISOAbbreviation>BMC Bioinformatics</ISOAbbreviation>
</Journal>
<ArticleTitle>Distinguishing successive ancient polyploidy levels based on genome-internal syntenic alignment.</ArticleTitle>
<Pagination>
<MedlinePgn>635</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12859-019-3202-x</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">A basic tool for studying the polyploidization history of a genome, especially in plants, is the distribution of duplicate gene similarities in syntenically aligned regions of a genome. This distribution can usually be decomposed into two or more components identifiable by peaks, or local maxima, each representing a different polyploidization event. The distributions may be generated by means of a discrete time branching process, followed by a sequence divergence model. The branching process, as well as the inference of fractionation rates based on it, requires knowledge of the ploidy level of each event, which cannot be directly inferred from the pair similarity distribution.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">For a sequence of two events of unknown ploidy, either tetraploid, giving rise to whole genome doubling (WGD), or hexaploid, giving rise to whole genome tripling (WGT), we base our analysis on triples of similar genes. We calculate the probability of the four triplet types with origins in one or the other event, or both, and impose a mutational model so that the distribution resembles the original data. Using a ML transition point in the similarities between the two events as a discriminator for the hypothesized origin of each similarity, we calculate the predicted number of triplets of each type for each model combining WGT and/or WGD. This yields a predicted profile of triplet types for each model. We compare the observed and predicted triplet profiles for each model to confirm the polyploidization history of durian, poplar and cabbage.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">We have developed a way of inferring the ploidy of up to three successive WGD and/or WGT events by estimating the time of origin of each of the similarities in triples of genes. This may be generalized to a larger number of events and to higher ploidies.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Yue</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Mathematics and Statistics, University of Ottawa, 150 Louis Pasteur pvt, Ottawa, K1N 6N5, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zheng</LastName>
<ForeName>Chunfang</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Mathematics and Statistics, University of Ottawa, 150 Louis Pasteur pvt, Ottawa, K1N 6N5, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sankoff</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Mathematics and Statistics, University of Ottawa, 150 Louis Pasteur pvt, Ottawa, K1N 6N5, Canada. sankoff@uottawa.ca.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>12</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Bioinformatics</MedlineTA>
<NlmUniqueID>100965194</NlmUniqueID>
<ISSNLinking>1471-2105</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D035161" MajorTopicYN="N">Bombacaceae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019607" MajorTopicYN="N">Brassicaceae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="Y">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008957" MajorTopicYN="N">Models, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011123" MajorTopicYN="Y">Polyploidy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026801" MajorTopicYN="N">Synteny</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Branching process</Keyword>
<Keyword MajorTopicYN="N">Gene triples</Keyword>
<Keyword MajorTopicYN="N">Plant genomes</Keyword>
<Keyword MajorTopicYN="N">Polyploidy</Keyword>
<Keyword MajorTopicYN="N">Whole genome doubling</Keyword>
<Keyword MajorTopicYN="N">Whole genome tripling</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>12</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>12</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>2</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31842736</ArticleId>
<ArticleId IdType="doi">10.1186/s12859-019-3202-x</ArticleId>
<ArticleId IdType="pii">10.1186/s12859-019-3202-x</ArticleId>
<ArticleId IdType="pmc">PMC6915858</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 2007 Sep 27;449(7161):463-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17721507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2019 Aug 20;116(34):17081-17089</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31387975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Feb;53(4):661-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18269575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2017 Nov;49(11):1633-1641</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28991254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Algorithms Mol Biol. 2019 Aug 1;14:18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31388348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2018 Mar;105(3):463-469</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29574686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Dec;148(4):1772-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18952863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2009 Oct 05;1:391-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20333207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IEEE/ACM Trans Comput Biol Bioinform. 2018 Jul 31;:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30072336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2019 Jan;179(1):209-219</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30385647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2014 Oct;24(10):1274-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24980958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IEEE/ACM Trans Comput Biol Bioinform. 2018 Sep-Oct;15(5):1579-1584</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28715335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014 May 23;5:3930</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24852848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2018 May 8;19(Suppl 5):287</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29745846</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<country name="Canada">
<noRegion>
<name sortKey="Zhang, Yue" sort="Zhang, Yue" uniqKey="Zhang Y" first="Yue" last="Zhang">Yue Zhang</name>
</noRegion>
<name sortKey="Sankoff, David" sort="Sankoff, David" uniqKey="Sankoff D" first="David" last="Sankoff">David Sankoff</name>
<name sortKey="Zheng, Chunfang" sort="Zheng, Chunfang" uniqKey="Zheng C" first="Chunfang" last="Zheng">Chunfang Zheng</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A19 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000A19 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31842736
   |texte=   Distinguishing successive ancient polyploidy levels based on genome-internal syntenic alignment.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31842736" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020